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It is demonstrated that the renormalization group~RG! flows of depinning transitions do not depend on
whether the driving force or the system velocity is kept constant. This allows for a comparison between RG
results and corresponding self-organized critical models. However, close to the critical point, scaling functions
cross over to forms that can have singular behavior not seen in equilibrium thermal phase transitions. These
can be different for the constant force and constant velocity driving modes, leading to different apparent critical
exponents. This is illustrated by comparing extremal dynamics for interface depinning with RG results, deriv-
ing the change in apparent exponents. Thus, care has to be exercised in such comparisons.
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Driven dynamics of disordered systems have been stu
extensively from two different approaches. As the exter
driving force is increased, a system undergoes a depin
transition from a macroscopically static state~with transient
motion! to a moving steady state. This transition has be
successfully described as a dynamical second order p
transition @1#, and analyzed within the framework of th
renormalization group~RG!, originally for charge-density
waves~CDWs! @2# and subsequently for interfaces@3# and a
variety of other systems@4,5#. This approach obtains th
scaling behavior near the transition where the system s
to move@6#. On the other hand, the concept of self-organiz
criticality ~SOC!, in the original sandpile model@7# and de-
scendants thereof@8# has been used to obtain the behavior
systems that are forced to stayat the depinning transition.

One would expect there to be connections between th
two viewpoints@9#; indeed, it is possible to map automato
models for CDWs to the original SOC model@5,10#, and the
111 dimensional moving interfaces to a completely differe
SOC model@11#. The connections between the two ha
been exploited to obtain the dynamical critical exponentz for
CDWs by borrowing from exact results for SOC sandpi
@12#. However, it has been pointed out@8# that one has to be
careful whether the depinning transition is approached wi
time-independent external driving force, tuned to its critic
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value, or with a time-independent~infinitesimal! velocity. In
the latter case, one envisages a feedback loop that adjus
external force in a time-dependent way, so as to ensure
the rate at which the system moves~averaged over its entire
spatial extent! is strictly time independent. It has been su
gested@8# that the critical behavior at the depinning trans
tion could be different for these two driving modes. As
extreme example of constant current driving, there is
class of ‘‘extremal models’’@13–15#, where at every~dis-
crete! time step there is activity only at one lattice site in t
system.

For constant force driving, there are fluctuations in t
~spatially averaged! velocity of the system, while for con
stant velocity driving there are fluctuations in the extern
force. In either case, at a nonzero driving rate, the fluct
tions are small for sufficiently large systems, and thus
two driving mechanisms should be equivalent. However,
large system limit is problematic at the critical point. F
instance, with constant force driving, the mean square fl
tuations in the velocity of a large system are (dv)2

;v2(j/L)d, wherev is the mean velocity,j is the correla-
tion length at velocityv ~defined through the velocity auto
correlation function or other methods!, L is the linear extent
of the system, andd is its dimensionality. One would expec
that holding the velocity constant by adjusting the for
R7563 ©2000 The American Physical Society
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would make a qualitative difference to the dynamics wh
the velocity fluctuations are a significant fraction of the me
velocity, i.e.,j;L. Heuristically, for a fixedv and L→`,
imposing a constant velocity does not affect the dynam
since the total ‘‘activity’’ at every time step isvLd, so that
avalanches, etc., are free to unfold with their own inter
time scales. On the other hand, for fixedL asv→0, impos-
ing a constant velocity ‘‘chokes off’’ the dynamics: av
lanches proceed sequentially, with internal dynamics de
mined by the velocity constraint.

In this paper, we show that~to the extent that continuum
descriptions are appropriate! both constant force and con
stant velocity driving actually have thesamescaling under
the renormalization group~for steady state behavior!. How-
ever, scaling functions for various quantities, which can h
different behaviors in the limitsj!L and j@L, are often
different in thej@L regime for the two driving modes. It is
standard for scaling functions in equilibrium critical ph
nomena to behave differently when their arguments are s
and large, but as will be discussed later, dynamical crit
points have even more freedom in how scaling functions
behave. It is this freedom that allows identical RG flows
still yield different scaling functions for the two driving
modes in thej@L regime.

We demonstrate this by focusing on a particular syste
that of a interface with short range internal elastic inter
tions that is driven through a disordered medium by an
ternal force. Due to the disorder, different parts of the int
face experience different random pinning forces as t
move forward. Using the RG relationship between the int
face velocity and the correlation length@3# v;jz2z, the
crossover toj.L occurs atv;Lz2z. Note that extremal
dynamics for a (d11)-dimensional interface corresponds
v;L2d, and z2z,d in all dimensions, so thatj@L for
largeL.

It has been pointed out@16,14,17# that in extremal models
for the motion of pinned interfaces, the roughness of
interface can scale anomalously. Thus for a~111!-
dimensional interface in a system of sizeL in steady state
@18#, if h(x,t) is the interface position as a function of th
transverse coordinatex and the timet, the roughnessw(t)
5@^$h(x,t1t0)2h̄(t1t0)2h(x,t0)1h̄(t0)%2&#1/2 ~all aver-
ages are spatial averages! has the scaling form@17,19#

w~ t !5tbvL21/2wS L

t1/zvD . ~1!

~The subscripts onb andz denote constant velocity driving.!
It can be shown@14,17# that the scaling functionw goes to a
constant for large values of its argument. The explicitL de-
pendence that remains is anomalous, contrary to the no
expectation of a well definedL→` limit. As a consequence
of this, if the long time~steady state! roughness scales a
w(t→`);Lz, then the conventional relationz5zb is re-
placed by

z5zvbv2 1
2 . ~2!

With the additional result@14,17,20#

zv511z, ~3!
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one can obtainbv in terms ofz. Both Eqs.~2! and~3! differ
from renormalization group results@3# for an interface driven
with a constant applied force. In particular, the RG analy
yields no simple relation between the dynamic exponenz
and the roughness exponentz, unlike Eq. ~3!. Nor is there
any reason to expect the anomalous scaling form of Eq.~1!,
and thereforez5zb should hold instead of Eq.~2!.

We first demonstrate that, despite appearances, the
flows are unaffected by going from a constant force drivi
mode to a constant velocity driving mode. The stand
equation for zero-temperature driven dynamics of an in
face is@21#

] th~x,t !5¹2h~x,t !1Y„h~x,t !;x…1F. ~4!

Here¹2h(x,t) comes from the~short-ranged! elastic energy
of the interface,Y(h;x) is a pinning force that comes from
random ~impurity! potential, andF is the external driving
force. ~Of course, it is not necessary that all lattice grow
models—e.g., the Sneppen model@13#—can be mapped to
this or any continuum equation.! We have neglected Kardav
Parisi-Zhang-like terms@22,23#. Using the Martin-Siggia-
Rose method@24# and introducing an auxiliary fieldĥ(x,t),
one can construct@3# a generating functionalZ that can be
written as

Z5E @dh#@dĥ#expF E ddx dt iĥ~x,t !

3$] th2¹2h2F2Y~h;x!%G , ~5!

where integrating out the auxiliary field yields a product ofd
functions that imposes Eq.~4!. If instead the interface is
driven at constant velocity, Eq.~5! is replaced by

Z85E @dF#@dm#@dh#@dĥ#expF E ddx dt iĥ~x,t !

3$] th2¹2h2F~ t !2Y~h;x!%1 im~ t !$v2] th%G . ~6!

This extension is actually not difficult to understand: at a
time t, by first integrating overm(t) and ĥ(x,t), we obtain
d-function constraints that imposê] th&5v ~the average
here is a spatial average! and Eq.~5! with a ~as yet unknown!
driving forceF(t). Now performing the integral overF, the
integral together with the first constraint setsF(t) to be
whatever it has to be for̂] th& to be equal tov. One is left
with the second constraint, i.e., Eq.~4!, with F(t) adjusted to
ensure constant velocity. Even thoughF(t) is now a dynami-
cal variable instead of a parameter, since it is not a field,
it has no spatial dependence@nor hasm(t)], when short dis-
tance fluctuations are eliminated under renormalization th
are no extra loop corrections inZ8 compared toZ.

As mentioned earlier, even though the RG fixed point
the same for constant force and constant velocity driving,
behaviors of scaling functions are different for the two dr
ing modes in thej@L regime. To illustrate this, we firs
consider the scaling of the duration of an avalanche a
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function of its linear size. This has the general scaling fo

t~ l ,L,j!5 l zT~ l /L,j/L !. ~7!

Here l is the linear extent of the avalanche~in the d trans-
verse directions; in the direction the interface moves,
extent is; l z), L is the linear size of the system,j is the
correlation length, andz is the nontrivial dynamical exponen
from the RG. For a fixedl and j, as L→`, the avalanche
duration should be independent ofL since the system is un
correlated on length scales much bigger thanj @25–27#. It
should also be independent ofj, since requiring a tota
growth rate ofvLd for the system does not affect any av
lanche from proceeding with its own intrinsic time sca
ThusT(0,0) is a nonzero constant.

In the other regime ofj@L, i.e., if thev→0 limit is taken
before L→`, the avalanches are nonoverlapping in time.
the constant velocity driving mode, where the velocity co
straint is imposed, any single avalanche proceeds at a fi
rate. Therefore, for the constant velocity driving mod
t( l ,L,j) must be inversely proportional to the rate at whi
the avalanche is allowed to proceed, which isvLd. Requiring
that t should have such a dependence onv andL, using the
result @3# v;jz2z, it is straightforward to verify that

lim
j/L→`

t~ l ,L,j!; l z1d/~vLd!. ~8!

This yields an apparent dynamical exponent ofzv5z1d,
which is the (d11)-dimensional generalization of Eq.~3!.
Note that there isno change in the apparent dynamical e
ponent in thej@L regime for constant force driving, wher
an avalanche is allowed to proceed at its intrinsic r
~through parallel updating of lattice sites!. This is why the
RG estimate forz for two dimensional CDWs agrees wit
the exact result for Abelian sandpiles@12#.

The analysis of the interface roughness for a system
linear sizeL, w(t,L), proceeds in a similar manner. At
velocity v, the interface roughness has the scaling form

w~ t,L,j!5LzW~ t/Lz;j/L !. ~9!

For fixed t and j, the roughness must have a well defin
L→` limit:

lim
L→`

w~ t,L,j!5jzW1~ t/jz!. ~10!

For larget, the roughness saturates to the steady state f
w;jz. For j→` ~the largeL limit has been taken first!, or
equivalently for smallt, the roughness isj independent, i.e.
w;tz/z.

In the other regime ofj@L, the apparent exponents a
once again different for constant velocity driving. In th
case, the dynamics are controlled by the imposed veloc
i.e., thev and t dependence of Eq.~9! occurs only in the
combinationt5vLdt. Usingv;jz2z, this implies

lim
j/L→`

w~ t,L,j!5LzW2~t/Lz1d!. ~11!

~With extremal dynamics, where one site moves forward
every time step,t5t.) In the large time limit, the roughnes
approaches the steady state formw;Lz, i.e., W2(`) is a
e
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constant. It is not obvious how to extract the behavior of
function W2 when its argument is small, but physical arg
ments supported by numerical results@14,17# show that
w(t,L) must have a residualL2d/2 dependence. Therefore

w;~vLdt !bv/L2d/2 ~12!

with

bv5
z1d/2

z1d
, ~13!

which is Eq.~10! of Ref. @17# ~in d dimensions!.
Equations~8! and~12! give thev→0 scaling behavior of

avalanche durations and interface roughness, respecti
for constant velocity driving. We note once again that the
are forj@L, i.e., v→0 beforeL→`. As mentioned before
even in critical phenomena for equilibrium phase transitio
as one approaches the transition for a fixed system size,
sees a change in the scaling form of dynamical variab
However, it is generally possible to obtain the behavior
this regime by requiring that there should be no depende
on ~say! the reduced temperaturet for the behavior of a finite
size system. This requirement comes from the fact that th
areno thermodynamic singularities for a finite sized syste
it is possible to go smoothly from one side of the pha
transition to another. No such requirement exists for dyna
cal phase transitions, and one must be careful about pos
v dependence, even in thev→0 regime@2#.

There are other mechanisms as well that can make
connection between RG exponents and apparent scaling
ficult. For instance, for CDWs below the depinning thres
old, the periodicity of the dynamical variable~the CDW
phase! prevents it from advancing by more than 2p any-
where in a single avalanche, but the same periodicity ma
a region that has just avalanched susceptible to an immi
‘‘retriggering’’ of a fresh avalanche@28#. The low frequency
dynamics thus ‘‘sees’’ a nontrivial analog of the roughne
exponent, and the distribution of avalanche sizes is sing
as v→0. Another example is for interface roughness itse
where the steady state roughness over a subsystem of sx
in a system with sizeL scales asw2(x;L);x2L2z22 when
z.1 @29#. This is because the Fourier transform of t
steady state roughness must be well behaved asL→`, and
for z.1 w2(x;L) is dominated by long wavelength mode
with q;1/L.

In this paper we have shown that RG flows for depinni
transitions are the same whether the system is driven wi
constant force or a constant velocity. However, in the criti
regime, the apparent scaling behavior of physical quanti
can be different for the two cases: ‘‘hidden’’ powers ofv
andL contribute to scaling dimensions in Eqs.~8! and ~12!.
Scaling functions have the sameform, but can have different
limits for the two driving modes. This is unlike what is see
in equilibrium critical phenomena, and seems to be m
common in the constant velocity driving mode. Despite t
caveat, one can obtain results for one driving mode from
other.

I thank Anne Tanguy and Maya Paczuski for useful d
cussions.
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