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It is demonstrated that the renormalization grdi®$) flows of depinning transitions do not depend on
whether the driving force or the system velocity is kept constant. This allows for a comparison between RG
results and corresponding self-organized critical models. However, close to the critical point, scaling functions
cross over to forms that can have singular behavior not seen in equilibrium thermal phase transitions. These
can be different for the constant force and constant velocity driving modes, leading to different apparent critical
exponents. This is illustrated by comparing extremal dynamics for interface depinning with RG results, deriv-
ing the change in apparent exponents. Thus, care has to be exercised in such comparisons.

PACS numbg(s): 05.65:+b, 64.60.Ht, 05.45-a, 68.35.Rh

Driven dynamics of disordered systems have been studiedalue, or with a time-independefinfinitesima) velocity. In
extensively from two different approaches. As the externathe latter case, one envisages a feedback loop that adjusts the
driving force is increased, a system undergoes a depinningxternal force in a time-dependent way, so as to ensure that
transition from a macroscopically static stdwgth transient the rate at which the system move@weraged over its entire
motion) to a moving steady state. This transition has beerspatial extentis strictly time independent. It has been sug-
successfully described as a dynamical second order phagested[8] that the critical behavior at the depinning transi-
transition [1], and analyzed within the framework of the tion could be different for these two driving modes. As an
renormalization groupRG), originally for charge-density extreme example of constant current driving, there is the
waves(CDWs) [2] and subsequently for interfacid] and a  class of “extremal models’{13—15, where at every(dis-
variety of other system$4,5]. This approach obtains the cretd time step there is activity only at one lattice site in the
scaling behavior near the transition where the system stargystem.
to move[6]. On the other hand, the concept of self-organized For constant force driving, there are fluctuations in the
criticality (SOQ, in the original sandpile modé¢lr] and de- (spatially averagedvelocity of the system, while for con-
scendants thered8] has been used to obtain the behavior ofstant velocity driving there are fluctuations in the external
systems that are forced to staythe depinning transition.  force. In either case, at a nonzero driving rate, the fluctua-

One would expect there to be connections between thed®ns are small for sufficiently large systems, and thus the
two viewpoints[9]; indeed, it is possible to map automaton two driving mechanisms should be equivalent. However, the
models for CDWs to the original SOC modél,10], and the large system limit is problematic at the critical point. For
1+1 dimensional moving interfaces to a completely differentinstance, with constant force driving, the mean square fluc-
SOC model[11]. The connections between the two havetuations in the velocity of a large system aréfv}?
been exploited to obtain the dynamical critical exporfolr ~v2(&/L)Y, wherev is the mean velocity¢ is the correla-
CDWs by borrowing from exact results for SOC sandpilestion length at velocityy (defined through the velocity auto-
[12]. However, it has been pointed d&] that one has to be correlation function or other methodd. is the linear extent
careful whether the depinning transition is approached with af the system, and is its dimensionality. One would expect
time-independent external driving force, tuned to its criticalthat holding the velocity constant by adjusting the force
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would make a qualitative difference to the dynamics wherone can obtairg, in terms of{. Both Egs.(2) and(3) differ

the velocity fluctuations are a significant fraction of the meanfrom renormalization group resulf8] for an interface driven

velocity, i.e.,é~L. Heuristically, for a fixedv andL—o,  with a constant applied force. In particular, the RG analysis

imposing a constant velocity does not affect the dynamicsyields no simple relation between the dynamic exponent

since the total “activity” at every time step isLY so that and the roughness exponefitunlike Eq.(3). Nor is there

avalanches, etc., are free to unfold with their own internalany reason to expect the anomalous scaling form of(Eg.

time scales. On the other hand, for fixedasv—0, impos-  and therefore=z8 should hold instead of Ed2).

ing a constant velocity “chokes off’ the dynamics: ava- We first demonstrate that, despite appearances, the RG

lanches proceed sequentially, with internal dynamics deterflows are unaffected by going from a constant force driving

mined by the velocity constraint. mode to a constant velocity driving mode. The standard
In this paper, we show thdto the extent that continuum equation for zero-temperature driven dynamics of an inter-

descriptions are appropriatéoth constant force and con- face is[21]

stant velocity driving actually have theamescaling under

the renormalization grouffor steady state behaviorHow- dh(x,1)=V?h(x,t)+Y(h(x,t):x)+F. (4)

ever, scaling functions for various quantities, which can have

d@fferent .behaviors in t.he limitg<L and §>L are often_ Here V2h(x,t) comes from théshort-rangeflelastic energy
different in the£> L regime for the two driving modes. Itis f the interface)(h;x) is a pinning force that comes from a
standard for scallng_ functions in equ!hbrlum critical phe- random (impurity) potential, andF is the external driving
nomena to behave differently when their arguments are smafhce (Of course, it is not necessary that all lattice growth
and large, but as will be discussed later, dynamical crltlcahqodeb_e'g_ the Sneppen modi&B]—can be mapped to

points have even more freedom in how scaling functions cagyis or any continuum equatione have neglected Kardav-
behave. It is this freedom that allows identical RG flows tOParisi-Zhang-Iike termg22,23. Using the Martin-Siggia-

still yield different scaling functions for the two driving . . . I
modes in thee>L regime. Rose methodl24] and introducing an auxiliary field(x,t),

We demonstrate this by focusing on a particular systemOne can construdi3] a generating functional that can be

that of a interface with short range internal elastic interac—ertten as

tions that is driven through a disordered medium by an ex-

ternal force_. Due to_ the disorder, diffe_ren_t parts of the inter- Z:J [dh][dAh]ex;“’ d% dt iﬁ(x,t)

face experience different random pinning forces as they

move forward. Using the RG relationship between the inter-

face velocity and the correlation lengfl8] v~ &7, the x{oh—V2h—F=Y(h;x)}

crossover toé>L occurs atv~L¢ 2 Note that extremal

dynamics for a ¢+ 1)-dimensional interface corresponds to . . . . .

v~L"9 andz—¢<d in all dimensions, so tha¢>L for where integrating out the auxiliary field yields a productsof

largeL. functions that imposes Ed4). If instead the interface is
It has been pointed oliL6,14,17 that in extremal models driven at constant velocity, E@) is replaced by

for the motion of pinned interfaces, the roughness of the

interface can scale anomalously. Thus for (a+1)-

dimensional interface in a system of sikzein steady state

[18], if h(x,t) is the interface position as a function of the

transverse coordinate and the timet, the roughnessv(t) x{ah—V2h—F(t)=Y(h;x)}+iu(t){v—ah}|. (6)

=[{{h(x,t+1to) —h(t+1te) — h(x,to) + h(t)}2)]Y? (all aver-

ages are spatial averagd®ms the scaling formil7,19

: ®)

z*=f [dF][dM][dh][dﬁ]exp“ dd dtih(x,t)

This extension is actually not difficult to understand: at any
LB —12 L time t, by first integrating ove(t) andh(x,t), we obtain
w(t)=t"L" " 72 | () s-function constraints that impos@;h)=v (the average
here is a spatial averagend Eq.(5) with a (as yet unknown
(The subscripts o andz denote constant velocity driving. driving force F(t). Now performing the integral ovef, the
It can be show14,17] that the scaling functiop goes to a  integral together with the first constraint se¥¢t) to be
constant for large values of its argument. The explicdle-  whatever it has to be fofé;h) to be equal ta. One is left
pendence that remains is anomalous, contrary to the normalith the second constraint, i.e., B¢), with F(t) adjusted to
expectation of a well defined—  limit. As a consequence ensure constant velocity. Even thoug(t) is now a dynami-
of this, if the long time(steady staferoughness scales as cal variable instead of a parameter, since it is not a field, i.e.,
w(t—»)~L¢, then the conventional relatiofi=z3 is re- it has no spatial dependenfp®or hasw(t)], when short dis-

placed by tance fluctuations are eliminated under renormalization there
are no extra loop corrections &' compared taZ.
(=7,8,— 5. (2) As mentioned earlier, even though the RG fixed point is
the same for constant force and constant velocity driving, the
With the additional resulf14,17,2Q behaviors of scaling functions are different for the two driv-

ing modes in thet>L regime. To illustrate this, we first
z,=1+¢, 3 consider the scaling of the duration of an avalanche as a
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function of its linear size. This has the general scaling formconstant. It is not obvious how to extract the behavior of the
function W, when its argument is small, but physical argu-
—|Z
thL, O =1"T(/L,&/L). (7) ments supported by numerical results4,17] show that

H —d/2
Herel is the linear extent of the avalanckie the d trans-  W(7,L) must have a residual” ™ dependence. Therefore,

verse directions; in the direction the interface moves, the

extent is~1¢), L is the linear size of the systerd, is the w~ (LR L= (12)
correlation length, andis the nontrivial dynamical exponent

from the RG. For a fixed and &, asL—, the avalanche With

duration should be independent lofsince the system is un-

correlated on length scales much bigger tai25-27. It +di2

should also be independent & since requiring a total ﬂv:m’ (13

growth rate ofvLY for the system does not affect any ava-
lanche from.proceeding with its own intrinsic time scale. yhich is Eq.(10) of Ref.[17] (in d dimensiong
ThusT(0,0) is a nonzero constant. o Equations(8) and(12) give thev —0 scaling behavior of

In the other regime of>L, i.e., if thev—0 limitis taken  ayglanche durations and interface roughness, respectively,
before L— <, the avalanches are nonoverlapping in time. Infor constant velocity driving. We note once again that these
the constant velocity driving mode, where the velocity con-g,e foré>L, i.e.,v—0 beforeL —. As mentioned before,
straint is imposed, any single avalanche proceeds at a fixeglen in critical phenomena for equilibrium phase transitions,
rate. Therefore, for the constant velocity driving mode,5s one approaches the transition for a fixed system size, one
t(l,L, &) must t_>e inversely proportional to the rate at _WhiChsees a change in the scaling form of dynamical variables.
the avalanche is allowed to proceed, which is'. Requiring  However, it is generally possible to obtain the behavior in
thatt should have such a dependencevoandL, using the  this regime by requiring that there should be no dependence
result[3] v~ &7, it is straightforward to verify that on (say the reduced temperatutéor the behavior of a finite

. +d d size system. This requirement comes from the fact that there

glliTmt(l’L’g)ng I(wL?). (8) areno thermodynamic singularities for a finite sized system:
it is possible to go smoothly from one side of the phase
This yields an apparent dynamical exponentzpf/+d, transition to another. No such requirement exists for dynami-
which is the @+ 1)-dimensional generalization of E¢B). cal phase transitions, and one must be careful about possible
Note that there is10 change in the apparent dynamical ex- v dependence, even in the-0 regime[2].
ponent in the¢>L regime for constant force driving, where ~ There are other mechanisms as well that can make the
an avalanche is allowed to proceed at its intrinsic rateconnection between RG exponents and apparent scaling dif-
(through parallel updating of lattice sitesThis is why the ficult. For instance, for CDWs below the depinning thresh-
RG estimate forz for two dimensional CDWs agrees with ©0ld, the periodicity of the dynamical variabighe CDW
the exact result for Abelian sandpilEk2]. phasg prevents it from advancing by more thanr2any-

The analysis of the interface roughness for a system owhere in a single avalanche, but the same periodicity makes
linear sizeL, w(t,L), proceeds in a similar manner. At a @ region that has just avalanched susceptible to an imminent
velocity v, the interface roughness has the scaling form  “retriggering” of a fresh avalanchg28]. The low frequency

dynamics thus “sees” a nontrivial analog of the roughness
w(t,L, &)=L W(t/L%E/L). 9 exponent, and the distribution of avalanche sizes is singular
) ) asv—0. Another example is for interface roughness itself,
For fixedt and ¢, the roughness must have a well definedyynere the steady state roughness over a subsystem of size
L—oo limit: in a system with sizé. scales asv?(x;L)~x?L%¢~? when
. _ gl - {>1 [29]. This is because the Fourier transform of the
L“El WL L, §)=EWy (U £). (10 steady state roughness must be well behaveld-asc, and
for {>1 w?(x;L) is dominated by long wavelength modes
For larget, the roughness saturates to the steady state formith g~ 1/L.

w~ &6, For é— (the largeL limit has been taken firstor In this paper we have shown that RG flows for depinning
equivalently for smalt, the roughness i§ independent, i.e., transitions are the same whether the system is driven with a
w~t42, constant force or a constant velocity. However, in the critical

In the other regime of>L, the apparent exponents are regime, the apparent scaling behavior of physical quantities
once again different for constant velocity driving. In this can be different for the two cases: “hidden” powers wf
case, the dynamics are controlled by the imposed velocitygndL contribute to scaling dimensions in Ed8) and(12).

i.e., thev andt dependence of Eq9) occurs only in the Scaling functions have the sarfem, but can have different

combinationr=uv L. Usingv ~ &2, this implies limits for the two driving modes. This is unlike what is seen
_ i in equilibrium critical phenomena, and seems to be more
lim w(t,L,&)=LW,(7/LEY). (1) common in the constant velocity driving mode. Despite this
gL caveat, one can obtain results for one driving mode from the
(With extremal dynamics, where one site moves forward af ther.

every time stepr=t.) In the large time limit, the roughness | thank Anne Tanguy and Maya Paczuski for useful dis-
approaches the steady state fown-L¢, i.e., Wo(<) is a  cussions.
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